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G R O U P  C L A S S I F I C A T I O N  

O F  T H E  T W O - D I M E N S I O N A L  E Q U A T I O N S  O F  M O T I O N  

O F  A V I S C O U S  H E A T - C O N D U C T I N G  P E R F E C T  G A S  

V .  V .  B u b l i k  UDC 517.95 + 519.46 

1. G e n e r a l  S t a t e m e n t  o f  t h e  P r o b l e m .  The group properties of a system of differential equations 
which describe plane (v = 0) and axisymmetrical (v = i) motions of a viscous heat-conducting perfect gas 
are investigated: 

Pt + upz  + vpy  + pu~ + pry  + v pu = 0; (1.1) 
x 

p(u, + ~ + ,~y)  = - p ~  - ~ It ~ + , ,  + -g ~ + 2 ( i t ~ ) ~  + (it(u~ + ,~))~ + 2~it ~ �9 (1.2) 

p(vt  + u v z  + vvu)  = -P~t - "~ t t uz  + v u + v + 2(#uu) u + (it(up + vz))z + v (u u + v=); (1.3) 
Y 

Here p is the density, p is the pressure, It is the viscosity coefficient, a~ is the coefficient of heat conductivity, 
e is the internal energy of the gas, r = d ~ / d T ,  and T is the temperature.  

The gas obeys the Clapeyron equation p = R p T .  The internal energy of a perfect gas depends only on 
temperature  [1]. The coefficients of viscosity and of heat conductivity are also considered dependent only on 
temperature:  

It = I t ( v / p ) ,  ~ = ~ ( v l p ) ,  ~ = d r i p ) .  (1.5)  

For Eqs. (1.1)-(1.4), the problem of group classification with respect to the arbitrary elements #, ze, 
and r [2] is posed. The gas is considered essentially viscous and heat-conducting (it # 0 and ze # 0). 

The full group of transformations is sought in the space of variables t, x, y, u, v, p, and p. 
2. E q u i v a l e n c e  T r a n s f o r m a t i o n .  Group classification requires finding the equivalence group 

admit ted by Eqs. (1.1)-(1.4). The following designations will be used everywhere: 

q = ( t , x , y ) ,  w = ( u , v , p , p ) ,  r = (r ze, It', ae'), h = ( t , x , y , u , v , p , p ) ,  

ws ', w~j=Ows s, T ~ = a r ' l O h  m 

( k = l , . . . , 4 ;  i , j = 1 , 2 , 3 ;  I = 1 , . . . , 5 ;  m = 1 , . . . , 7 ) .  

To system (i.1)-(1.4) we add the following conditions on the functions #, ze, and e', which are a 
consequence of the assumptions (1.5): 

~ = 0 (k , i  = 1 , . . . , 5 ) ;  (2.1) 
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0r .'  e__'. (2.2) 
= 0p - R.'  0p - R.'  

O# p f  Oa~ pM Oe I _ pc" (2.3) 
O--p = Rp 2' O'---p = Rp 2' Op Rp 2" 

In system (1.1)-(1.4), the derivatives of viscosity and heat conductivity with respect to space are written in 
the form 

Ku = - 7 ' '  7 j  

For system (1.1)-(1.4), (2.1)-(2.3), we solve the problem of constructing the full group of 
transformations of the space of variables t, x, y, u, v, p, p, #, ~e, e ~, f ,  and M with the admissible operator 
X r = ~iOql "F rlJowj + otkork, where ~i, r/i, and a t~ are functions of t, x, y, u, v, p, p, #, ee, e ~, f ,  and M. 

The coordinates of the prolonged operator X~ X e iO �9 ~ 0 �9 i . e = + ( )  ~;. + ( jk  w}k+/3}0r~, with allowance for (2.1), 

are found from the formulas 

. . . .  = - _ vTjjjr ] . 

Here 

k w~jO,,~ (j = 1,2,3); D i = Oqj + wj Owk + 

, i (k 6, 7). D j = 0 h j  ( j = l , . . . , 5 ) ;  D ~ = 0 h k + T k 0 r i  = 

The difference in the calculation of the coordinates ~ and/3} arises from the fact that  the variables u, 
v, p, and p and e', #, a~, f ,  and M are present in different spaces. 

Computat ion of the equivalence group leads to transformations that  correspond to the operator 

tot + xa~ + ya~ + tO,, + ~ 0 ~  + d o , ,  + ~ ' o ~  (2.4) 

and to the kernel of the full groups (v = 0, 1), which is written below. 
3. R e s u l t  of  t h e  G r o u p  Class i f ica t ion .  Equations (1.1)-(1.4) are treated as a system of second-order 

differential equations for four unknown functions: u, v, p, and p. The operator admit ted by these equations is 
sought for in the form 

X =  i O q~ + r]i O,oj , 

where ~i, and rlJ are functions of t, x, y, u, v, p, and p. 
The  algorithm for finding the full group [2] requires a large body of intermediate calculations. Thus, 

the number of defining equations in this case equals 28192, and therefore they were derived on a computer. 
The "Reduce" algebraic programming system [3] was written for these computations. 

Computat ions lead to the classifying equations 

c R - ~  = 0 ,  c R p2 = 0 ;  (3.1) 

c ( , / ~ ) '  = 0, c~" = 0 (3.2) 

with the constant c related to the coordinates ~i and 7/k of the infinitesimal operator: 

~1 -~ c6 + c7t, ~2 = U(Cl + c 3 t + c s y ) + ( C 7  +C)X, ~3 = C2 + c4t -- uCSX + (C7 + C)y, 

771 = u(c3 + csv) + cu, 712 = c4 _ vc~u + cv, q s = ( _ c z + 2 ( w _ l ) c ) p ,  r] 4 = ( - c T + 2 w c ) p .  

In the determination of the kernel of the full groups it is assumed that  the functions #, ee, and r are 
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TABLE 1 

No. E 

, 

P 2 
( ~ -  1)p 

/z r Basis Lr 

7 1,2,3,4,5,6,7 

1,2,3,4,5,6,7,8 

TABLE 2 

X2 
X4 
X6 
Xr 
X8 

X2 X4 Xs Xr Xs 
0 0 0 X2 X2 
o o -x~ o x4 
0 X2 0 Xs 0 

-X2 0 -X6 0 0 
-x~ -x4 o o o 

arbitrary and, hence, c = 0. Therefore, in the case of plane symmetry (u = 0), the kernel is the seven-parameter 
group and, in the case of axial symmetry (u = 1), the kernel is the four-paramer group. 

The specialization of the elements #, ae, and r follows from Eqs. (3.1) and (3.2). 
Table I gives the result of group classification for the case of plane symmetry, accurate to the equivalence 

transformations (2.4). Here f ,  g, and h are arbitrary functions of specified arguments and 7 r 1, w, and ae0 
are arbitrary constants. The basis of the principal Lie algebra is represented by the numbers of the operators 

xx=a~, x2=ay, x3=ta~+a~, x4=ta~+a~, xs=vo -xa +va.- a , x6=a,, 
X7 = tat + xa .  + yay - pa. - pap, )(8 = xa.  + yay + ua.  + va~ + 2(w - 1)pa. + 2wpap. 

In the case of axial symmetry, the equations do not admit the operators X1, X3, and X5 and in other 
respects the result of the classification coincides with the result given in Table 1. 

4. E x a c t  So lu t ions .  For a model of a polytropic gas with an exponential temperature dependence of 
viscosity and of heat conductivity, invariant and partially invariant solutions were constructed. In this work 
only some solutions to the equations of axisymmetric motion of the gas are given. 

To distinguish classes of essentially dissimlar solutions, it is required to construct an optimal system 
of subalgebras of the Lie algebra L5 = {X2,X4,X6,X7,X8}. For this purpose, the algebraic approach to 
constructing the optimal system of subalgebras is used, which was recently developed in [4-6]. 

Table 2 is the commutator table for the algebra Lie Ls. 
Table 3 gives actions of the internal automorphisms of the Lie algebra L5 on the coordinates of the 

vector X = xigi ,  where two discrete automorphisms, E1 and E2, which correspond to reversal of the directions 
of the y and t axes (in the first case) and of the y axis (in the second case), are added. 

Table 4 shows the optimal system of subalgebras of the algebra Lie Ls. The first integer in the number of 
the subalgebra is its dimension, and the second figure is its number among subalgebras of the given dimension. 
The coefficient a can acquire any real value, and the coefficients fl and 7 cannot acquire the values 0 and -1 ,  
respectively. Self-normalized subalgebras are marked by the equality sign. The superscript means that in the 
indicated subalgebra the value of the parameter is taken equal to the superscript (for example, 4.1 ~ designates 
the subalgebra 4.1 with a = 0). 

As examples of exact solutions we consider the solutions obtained on the basis of three-dimensional 
subalgebras. In this case invariant solutions are represented as a system of algebraic equations, and partially 
invariant solutions are represented as a system of ordinary differential equations. 

172 



TABLE 3 

Automorphism x 2 x 4 x s 

Ag. z 2 + a~(x r + x 8) z 4 x s 

A4 x 2 - -  0,4 x4  Z4 + a4 zs z 6 

A6 x 2 + a6 x4 x 4 x 6 + a6 x7 

A7 a7 x2 z 4 a7 x6 

As  as x2 a8 x4 Z 6 

E1 - -x  2 z 4 - - z  s 

X 2 --Z 4 --X 6 

2~ 7 

2~ 7 

~7 

X 7 

Z 7 

~7 

X 7 

X 8 

Z 8 

~8 

~8 

2:8 

X 8 

2:8 

~8 

By a physical solution is meant  a solution of system (1.1)-(1.4) that  satisfies the conditions p > 0 and 
p > 0 .  

The  subalgebras 3.1 (~ # - i ) ,  3.4, 3.5, 3.6, 3.7, and 3.9 satisfy the necessary condition of existence of 
an invariant solution [2, Theorem 19.3]. The  solutions constructed on the basis of these subalgebras are given 
below. 

S u b m o d e l  3.1 ( a  ~ - 1 ) .  We consider the following cases: 
(a) for a = 0 the  solution has the  form u = u0 ~ 0, v = 0, p = p o / x ,  p = p o / x ,  and the constants uo, po, and 
p0 are related by the relation 

( po ~ ~ 3 Po 

xpo /  4 uo' 

(b) for a = - 1 / 2 ,  the solution is the rest: 

U ~ V ~ 0 ,  p = pox  -2~ ,  p = p0x-2(~ 

(c) for other  a ( a  ~ 0 and a ~ - 1 / 2 ) ,  physical solutions exist only for w = 0, i.e., when/z and ~e are constant  

u = u o x  ~/(~'+1), v = voz  ~/(~+1), p = p o z - ( 2 ~ + l ) / ( ~ + l ) ,  p = p o z - 1 / ( ~ + l ) .  

The constants  uo, vo, po, and po can be related in two ways: 

(1) vo = O, Po = ( a p o u o  + 

a 2 7 - 1  4 a - 1  
( 1 - 2 a V - V ) p o 2 u 2  + 4~--~1 ---~,a~o 3 a + 1  

4 2 a + 1 )  
3 a + l  u0, 

( o~ - 1)2 7~pouo) 
4 (c~+ 1) 2 

+ 16 2 a + l  7 - 1  
3 ( a + l )  2 R 

- -  - - z e o  = O; 

(2) a ( 3 a  2 - 8 a + 4 )  i 
P0 = 3(a  + 1) 2 P0' 

o~2(7 -- 1)v02 + - 4 3 ' +  (3a2 - 8a  + 4) 7 - 1  (a  + 1)3 p 2 - -  --R--ae0 - 2a27 - 5a  7 - = O. 

S u b m o d e l  3.4. Physical  solutions exist only for w 7t O: 

w -- 1 x x y p o x 2 ( ~ _ l ) t l _ 2 ~  ' 
u - - - w  t ' v = vo-/  + )-, p =  

/pox 3 -1 3 po x 2,, t - 2"~-1 ' P | ]\P0] - 4 w - - - T - P o - - ~ w p o .  
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The constants vo, po, and po can be related in two ways: 

(a) 

(b) 

1 - w  2 ( 
~-4 Po + .3  

6 ~ 3 ( ~  + 1) 
p0 = (2~ + 3 )@ - i)  p~ 

2 1 - w 2 a~o) 
w(7 1) + 3  w2 ~- P o P o + 6 w ( w + l ) e ~  _ - -  - g p 0  = 0; 

vo2=(i-we)(2w+3)a~o 2 ~ 2 - w - 2  2w+3 1 
2w 4 R q- ?xo 3 3w3 7 -  1" 

Submodel 3.5. Physical solutions exist only for w r 0 and w r 1/2: 

2 w -  l x  x ( ~ u -~ ~ T' v = vo~-, P -- pox2(~_l)tl_2w ' P = pox2~t_l_2w ' PO ~ 3wpo 3po 
\ p 0 J  - 2 ~ : i  ~ "  

The constants vo, po, and po can be related in two ways: 

(a) v o = 0 ,  12w(w+l)7  1 2 -4t~ ( ;  3 ( w + 1 ) 7 - 1  ) 
2w+l R e.0p0+ 8w 4 i(7-i)P~ 2w 2 R mo p0p0=0; 

(b) Vo2 = 2 w - 1  ( zeo 4w 2 ) 4 w 2 + 4 w - 3  
12w-~2~+1) 3 ( 2 w - 1 ) ( 2 w + l ) ~ + 2 R  - ( 2 w + 3 ) @ + 1 ) +  - 8 w - 3  , po= 2ws(2~o+l) PO. 

Submodel 3.6. Physical solutions exist only for w = O, i.e., when # and ~e are constants: 

v0 (5v0 + 8)u0 
= u o v q ,  v = t + v o 4 7 ,  ; = 2(uo~o + 2 ) x v q '  P = 2(~o,o + 2 ) v q '  

( 5 - ~ z e o -  T-~/ll_ _~)32u0v o + 2 ( 9 - ~ a e 0  - 2"Ou~vo 

 0v0§ 

Submodels 3.7 and 3.9 have no physical solutions. 
Partially invariant solutions are a generalization of invariant solutions. In their construction an 

overdetermined system of differential equations arises which requires a compatibility study, for example, 
by an algorithm in [7]. This algorithm, providing an answer to the question of integrability of the system, 
does not necessarily lead to a visible representation of the solution. We give herein only two partially invariant 
solutions, which are reduced to invariant solutions and have the simplest form. 

Submodel 3.10. The invariants of the subgroup are t, u/x ,  px 2(1-~), and px -2'~. We seek a solution 
in the form 

~, = xul(t ) ,  p = x2r p = x 2 ? l ( t ) .  

After compatibility analysis of system (1.1)-(1.4) for v, we obtain v = y/ t  + z~(t).  The functions ul(t) ,  ~(t), 
Pl (t), and pl (t) are found from the equations 

( p l + 2 W U l p l + p l / t = O ,  Pl u~Jr u ~---2~PlJ~--3~ Ul--  k p l /  ' 

, (  o, + Ul + t Pl k p l /  / ~  = 

, "y--1 /px'~ ~1"I pl 4-  r i~2 ,0 --pl-l-4(~-l-1)Tae0~11 ) --2({z-t-I)ulPl _2(,),_l)Ulp1_,),Tnt.~(~_l)~Ul -~-) (Pl'~ -t- 2(Pl~W-~O. 
\~11/ ~' \P l  / 

Since the equations are solved with respect to the first derivative of all sought-for functions, the solution 
is invariant under the theorem of reduction [2, Theorem 22.7]. 
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Submodel 3.11. Invariants of the subgroup: x, u, p, and p. We seek a solution in the form 

~, = ,~(x), P = p(x), P = p(=). 

After studying the system of equations (1.1)-(1.4) for compatibility we obtain u = cl/xp and v = v(x). 
Let us consider subalgebra in 2.16. It.is a subalgebra in 3.11 The invariant solution of submodel 2.16 

has the form 

= v = p = p = v (= ) ,  

i.e., submodel 3.11 is a particular case of submodel 2.16 (a more careful analysis shows that  these two models 
completely coincide). Since in the transition from submodel 3.11 to submodel 2.16 the rank of the solution 
is preserved and the defect decreases by one, the partially invariant solution 3.11 is reduced to the invariant 
solution 2.16. 

Depending on the value of Cl, the solution can be described in two ways: 
(a) cl # 0; the functions v(x), p(x), and p(x) satisfy the equations 

vH=vt(o.)(~--~) ~1(c1(~)a"--1)), 
cl - + + 

R 4Cl2Rp '2 
P" =---~PV'2 3~ox2p - - - - ~  P k ~o kP] 

pl 2 R clx2ppR 3 2 f P ' ~  3w + 4z2pp 
= 5 2  

P \~eo(7 -- 1) 4cl \ p ]  -~w + ', ~-.op -~x p~,p) ) x4 , 

(b) cl -- 0, p - P0; the functions v(x), and p(x) are restored from the equations 

v I = c : p ~ ' / z ,  p" + = O. 
p pox 

The remaining partially invariant solutions, which are constructed on the basis of three-dimensional 
subalgebras, have a cumbersome form and are not given here. 

This work was supported by the Russian Foundation for Fundamental  Research (Grant 93-013-17361). 
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